If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+14n=9
We move all terms to the left:
n^2+14n-(9)=0
a = 1; b = 14; c = -9;
Δ = b2-4ac
Δ = 142-4·1·(-9)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{58}}{2*1}=\frac{-14-2\sqrt{58}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{58}}{2*1}=\frac{-14+2\sqrt{58}}{2} $
| -8v+20=-6(v—5) | | n^2+14=9 | | 4z+1+17+5z=180 | | 8(10^3x)=20 | | g0+g1+g2=(1+g2) | | 450b+1/5=170 | | 2^3-8x=2^3x-8 | | (4x+23)=(7x+8) | | 3d=64 | | 4x/3=60 | | 6x+115=5 | | M1=6×-5,m7=115 | | (2x+57)=(7x+7) | | 5+a33=-2a-44 | | (2x+57)2=180 | | 207=16t^2+32t | | C=-4(8+2x) | | 6+2(3x-2)=2 | | 1/2(6x+4)-4(x-3)=0 | | x+4/4=2x-3/3 | | 2x+27=1x+41 | | 2x/3-49/15=7/5 | | 12.5/22=7/x | | 6x-4=3x-14 | | 12.5/22=7/c | | X+(x+.48)+(x+.48+1.10)=9.68 | | 2x/3=14/3 | | -4/32=5m | | 4(x-2.8)=8.2 | | 1/4=1x/3 | | -3x=-66x | | 6(x-8)=6x-1 |